메뉴 건너뛰기

S+ in K 4 JP

QnA 質疑応答

조회 수 0 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄

google-tablet-search-ipad-using.jpg Our analysis results reveal that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, notably within the domains of code, mathematics, and reasoning. Overall, DeepSeek-V3-Base comprehensively outperforms DeepSeek-V2-Base and Qwen2.5 72B Base, and surpasses LLaMA-3.1 405B Base in the vast majority of benchmarks, basically changing into the strongest open-source mannequin. We leverage pipeline parallelism to deploy totally different layers of a model on totally different GPUs, and for each layer, the routed specialists will be uniformly deployed on sixty four GPUs belonging to 8 nodes. Each MoE layer consists of 1 shared professional and 256 routed experts, the place the intermediate hidden dimension of each professional is 2048. Among the many routed consultants, 8 consultants will probably be activated for every token, and every token will likely be ensured to be despatched to at most 4 nodes. At the big scale, we prepare a baseline MoE mannequin comprising 228.7B whole parameters on 540B tokens. On the small scale, we train a baseline MoE mannequin comprising 15.7B total parameters on 1.33T tokens. POSTSUPERscript to 64. We substitute all FFNs except for the first three layers with MoE layers. As deepseek ai-V2, DeepSeek-V3 also employs additional RMSNorm layers after the compressed latent vectors, and multiplies additional scaling components at the width bottlenecks.


As well as, in contrast with DeepSeek-V2, the new pretokenizer introduces tokens that mix punctuations and line breaks. The pretokenizer and training knowledge for our tokenizer are modified to optimize multilingual compression efficiency. Finally, the coaching corpus for DeepSeek-V3 consists of 14.8T excessive-quality and various tokens in our tokenizer. The tokenizer for DeepSeek-V3 employs Byte-degree BPE (Shibata et al., 1999) with an prolonged vocabulary of 128K tokens. Standardized exams embody AGIEval (Zhong et al., 2023). Note that AGIEval consists of both English and Chinese subsets. Reference disambiguation datasets embrace CLUEWSC (Xu et al., 2020) and WinoGrande Sakaguchi et al. Following our earlier work (DeepSeek-AI, 2024b, c), we undertake perplexity-based mostly evaluation for datasets including HellaSwag, PIQA, WinoGrande, RACE-Middle, RACE-High, MMLU, MMLU-Redux, MMLU-Pro, MMMLU, ARC-Easy, ARC-Challenge, C-Eval, CMMLU, C3, and CCPM, and adopt technology-based evaluation for TriviaQA, NaturalQuestions, DROP, MATH, GSM8K, MGSM, HumanEval, MBPP, LiveCodeBench-Base, CRUXEval, BBH, AGIEval, CLUEWSC, CMRC, and CMath. Reading comprehension datasets embody RACE Lai et al. Thank you for reading! On prime of them, keeping the training information and the other architectures the identical, we append a 1-depth MTP module onto them and practice two fashions with the MTP strategy for comparability.


In addition, we carry out language-modeling-based analysis for Pile-test and use Bits-Per-Byte (BPB) as the metric to guarantee fair comparison amongst models using totally different tokenizers. Note that as a result of changes in our analysis framework over the past months, the performance of DeepSeek-V2-Base exhibits a slight difference from our previously reported results. To debate, I have two visitors from a podcast that has taught me a ton of engineering over the previous few months, Alessio Fanelli and Shawn Wang from the Latent Space podcast. We validate this technique on top of two baseline models throughout completely different scales. Note that throughout inference, we instantly discard the MTP module, so the inference prices of the compared models are precisely the identical. You can instantly make use of Huggingface's Transformers for model inference. 1) Compared with DeepSeek-V2-Base, as a result of enhancements in our mannequin architecture, the size-up of the mannequin measurement and training tokens, and the enhancement of data quality, DeepSeek-V3-Base achieves significantly better efficiency as anticipated. As for Chinese benchmarks, apart from CMMLU, a Chinese multi-topic multiple-alternative activity, DeepSeek-V3-Base additionally reveals higher efficiency than Qwen2.5 72B. (3) Compared with LLaMA-3.1 405B Base, the biggest open-source model with 11 times the activated parameters, DeepSeek-V3-Base additionally exhibits a lot better performance on multilingual, code, and math benchmarks.


DeepSeek-V2 Unpacked - Gradient Flow However, this trick may introduce the token boundary bias (Lundberg, 2023) when the model processes multi-line prompts without terminal line breaks, notably for few-shot evaluation prompts. Our evaluation relies on our internal analysis framework built-in in our HAI-LLM framework. From the desk, we are able to observe that the MTP strategy consistently enhances the mannequin performance on a lot of the evaluation benchmarks. The model was trained on 2,788,000 H800 GPU hours at an estimated value of $5,576,000. Under our training framework and infrastructures, coaching DeepSeek-V3 on each trillion tokens requires only 180K H800 GPU hours, which is way cheaper than training 72B or 405B dense fashions. In Table 3, we evaluate the base model of DeepSeek-V3 with the state-of-the-artwork open-source base fashions, including DeepSeek-V2-Base (DeepSeek-AI, 2024c) (our earlier launch), Qwen2.5 72B Base (Qwen, 2024b), and LLaMA-3.1 405B Base (AI@Meta, 2024b). We evaluate all these fashions with our inside analysis framework, and make sure that they share the identical analysis setting. POSTSUPERscript till the model consumes 10T coaching tokens. 0.3 for the first 10T tokens, and to 0.1 for the remaining 4.8T tokens.



If you loved this article therefore you would like to be given more info pertaining to ديب سيك generously visit our own web site.

List of Articles
번호 제목 글쓴이 날짜 조회 수
61415 The Key To Successful Deepseek MaricruzLandrum 2025.02.01 0
61414 How To Handle With Tax Preparation? SonjaClift0680468 2025.02.01 0
61413 Menyelami Dunia Slot Gacor: Petualangan Tidak Terlupakan Di Kubet BuddyParamor02376778 2025.02.01 0
61412 Three Warning Signs Of Your Deepseek Demise OnaGrosse11487346 2025.02.01 2
61411 China Z Visa: The Complete Guide For Foreign Workers In 2025 ElliotSiemens8544730 2025.02.01 2
61410 Deepseek It! Classes From The Oscars ElbaBellasis94550 2025.02.01 1
61409 World Class Tools Make Deepseek Push Button Easy ElkeMcAllister94233 2025.02.01 1
61408 The Insider Secrets Of Deepseek Discovered ArronJiminez71660089 2025.02.01 1
61407 Declaring Bankruptcy When Will Owe Irs Due NannetteShade6253777 2025.02.01 0
61406 The Anatomy Of Deepseek ChandaMarlow04510221 2025.02.01 0
61405 Three Of The Punniest Deepseek Puns You Could Find RobertaSprague336 2025.02.01 3
61404 What It Takes To Compete In AI With The Latent Space Podcast BlakeHanks26489147 2025.02.01 2
61403 Menyelami Dunia Slot Gacor: Petualangan Tak Terlupakan Di Kubet JuliannWalters94797 2025.02.01 0
61402 How Decide Upon Your Canadian Tax Program CortezGovan82868073 2025.02.01 0
61401 Menyelami Dunia Slot Gacor: Petualangan Tidak Terlupakan Di Kubet BrianHurtado5735 2025.02.01 0
61400 The Simple Aristocrat Pokies Online Real Money That Wins Customers JaimeDeHamel513 2025.02.01 0
61399 Open Mike On Deepseek BlairGlasfurd65607 2025.02.01 0
61398 Find Out How To Handle Each Deepseek Problem With Ease Using These Tips SheilaStow608050338 2025.02.01 2
61397 Study Exactly How We Made Deepseek Final Month Candelaria34A313302 2025.02.01 2
61396 KUBET: Situs Slot Gacor Penuh Peluang Menang Di 2024 Ward16004875786581 2025.02.01 0
Board Pagination Prev 1 ... 769 770 771 772 773 774 775 776 777 778 ... 3844 Next
/ 3844
위로