2023년 11월 2일부터 DeepSeek의 연이은 모델 출시가 시작되는데, 그 첫 타자는 DeepSeek Coder였습니다. 그 이후 2024년 5월부터는 DeepSeek-V2와 DeepSeek-Coder-V2 모델의 개발, 성공적인 출시가 이어집니다. 그리고 2024년 3월 말, DeepSeek는 비전 모델에 도전해서 고품질의 비전-언어 이해를 하는 모델 DeepSeek-VL을 출시했습니다. 자, 그리고 2024년 8월, 바로 며칠 전 가장 따끈따끈한 신상 모델이 출시되었는데요. 이 Lean 4 환경에서 각종 정리의 증명을 하는데 사용할 수 있는 최신 오픈소스 모델이 DeepSeek-Prover-V1.5입니다. DeepSeek 모델은 처음 2023년 하반기에 출시된 후에 빠르게 AI 커뮤니티의 많은 관심을 받으면서 유명세를 탄 편이라고 할 수 있는데요. DeepSeekMoE 아키텍처는 DeepSeek의 가장 강력한 모델이라고 할 수 있는 DeepSeek V2와 DeepSeek-Coder-V2을 구현하는데 기초가 되는 아키텍처입니다. DeepSeek의 오픈소스 모델 DeepSeek-V2, 그리고 DeepSeek-Coder-V2 모델은 독자적인 ‘어텐션 메커니즘’과 ‘MoE 기법’을 개발, 활용해서 LLM의 성능을 효율적으로 향상시킨 결과물로 평가받고 있고, 특히 DeepSeek-Coder-V2는 현재 기준 가장 강력한 오픈소스 코딩 모델 중 하나로 알려져 있습니다. AI 학계와 업계를 선도하는 미국의 그늘에 가려 아주 큰 관심을 받지는 못하고 있는 것으로 보이지만, 분명한 것은 생성형 AI의 혁신에 중국도 강력한 연구와 스타트업 생태계를 바탕으로 그 역할을 계속해서 확대하고 있고, 특히 중국의 연구자, ديب سيك 개발자, 그리고 스타트업들은 ‘나름의’ 어려운 환경에도 불구하고, ‘모방하는 중국’이라는 통념에 도전하고 있다는 겁니다.
특히 DeepSeek-Coder-V2 모델은 코딩 분야에서 최고의 성능과 비용 경쟁력으로 개발자들의 주목을 받고 있습니다. 이게 무슨 모델인지 아주 간단히 이야기한다면, 우선 ‘Lean’이라는 ‘ 기능적 (Functional) 프로그래밍 언어’이자 ‘증명 보조기 (Theorem Prover)’가 있습니다. 이전의 버전 1.5와 비교해서 버전 2는 338개의 프로그래밍 언어와 128K의 컨텍스트 길이를 지원합니다. 다시 DeepSeek 이야기로 돌아와서, DeepSeek 모델은 그 성능도 우수하지만 ‘가격도 상당히 저렴’한 편인, 꼭 한 번 살펴봐야 할 모델 중의 하나인데요. DeepSeek 모델 패밀리의 면면을 한 번 살펴볼까요? 이제 이 최신 모델들의 기반이 된 혁신적인 아키텍처를 한 번 살펴볼까요? 거의 한 달에 한 번 꼴로 새로운 모델 아니면 메이저 업그레이드를 출시한 셈이니, 정말 놀라운 속도라고 할 수 있습니다. DeepSeek 모델 패밀리는, 특히 오픈소스 기반의 LLM 분야의 관점에서 흥미로운 사례라고 할 수 있습니다. 더 적은 수의 활성화된 파라미터를 가지고도 DeepSeekMoE는 Llama 2 7B와 비슷한 성능을 달성할 수 있었습니다. 특히 DeepSeek-V2는 더 적은 메모리를 사용하면서도 더 빠르게 정보를 처리하는 또 하나의 혁신적 기법, MLA (Multi-Head Latent Attention)을 도입했습니다. 대부분의 오픈소스 비전-언어 모델이 ‘Instruction Tuning’에 집중하는 것과 달리, 시각-언어데이터를 활용해서 Pretraining (사전 훈련)에 더 많은 자원을 투입하고, 고해상도/저해상도 이미지를 처리하는 두 개의 비전 인코더를 사용하는 하이브리드 비전 인코더 (Hybrid Vision Encoder) 구조를 도입해서 성능과 효율성의 차별화를 꾀했습니다. 또 한 가지 주목할 점은, DeepSeek의 소형 모델이 수많은 대형 언어모델보다 상당히 좋은 성능을 보여준다는 점입니다.
허깅페이스 기준으로 지금까지 DeepSeek이 출시한 모델이 48개인데, 2023년 deepseek ai china과 비슷한 시기에 설립된 미스트랄AI가 총 15개의 모델을 내놓았고, 2019년에 설립된 독일의 알레프 알파가 6개 모델을 내놓았거든요. 바로 직후인 2023년 11월 29일, DeepSeek LLM 모델을 발표했는데, 이 모델을 ‘차세대의 오픈소스 LLM’이라고 불렀습니다. AI 커뮤니티의 관심은 - 어찌보면 당연하게도 - Llama나 Mistral 같은 모델에 집중될 수 밖에 없지만, DeepSeek이라는 스타트업 자체, 이 회사의 연구 방향과 출시하는 모델의 흐름은 한 번 살펴볼 만한 중요한 대상이라고 생각합니다. 그 결과, DeepSeek는 정해진 토큰 예산 안에서 고해상도 이미지 (1024X1024)를 효율적으로 처리하면서도 계산의 오버헤드를 낮게 유지할 수 있다는 걸 보여줬습니다 - 바로 DeepSeek가 해결하고자 했던, 계산 효율성 (Computational Efficiency) 문제를 성공적으로 극복했다는 의미죠. 자, 이렇게 창업한지 겨우 반년 남짓한 기간동안 스타트업 DeepSeek가 숨가쁘게 달려온 모델 개발, 출시, 개선의 역사(?)를 흝어봤는데요. 이렇게 한 번 고르게 높은 성능을 보이는 모델로 기반을 만들어놓은 후, 아주 빠르게 새로운 모델, 개선된 버전을 내놓기 시작했습니다. 이렇게 ‘준수한’ 성능을 보여주기는 했지만, 다른 모델들과 마찬가지로 ‘연산의 효율성 (Computational Efficiency)’이라든가’ 확장성 (Scalability)’라는 측면에서는 여전히 문제가 있었죠.
당시에 출시되었던 모든 다른 LLM과 동등하거나 앞선 성능을 보여주겠다는 목표로 만든 모델인만큼 ‘고르게 좋은’ 성능을 보여주었습니다. 이 소형 모델은 GPT-4의 수학적 추론 능력에 근접하는 성능을 보여줬을 뿐 아니라 또 다른, 우리에게도 널리 알려진 중국의 모델, Qwen-72B보다도 뛰어난 성능을 보여주었습니다. 불과 두 달 만에, DeepSeek는 뭔가 새롭고 흥미로운 것을 들고 나오게 됩니다: 바로 2024년 1월, 고도화된 MoE (Mixture-of-Experts) 아키텍처를 앞세운 DeepSeekMoE와, 새로운 버전의 코딩 모델인 DeepSeek-Coder-v1.5 등 더욱 발전되었을 뿐 아니라 매우 효율적인 모델을 개발, 공개한 겁니다. 1: MoE (Mixture of Experts) 아키텍처란 무엇인가? 먼저 기본적인 MoE (Mixture of Experts) 아키텍처를 생각해 보죠. Through co-design of algorithms, frameworks, and hardware, we overcome the communication bottleneck in cross-node MoE training, almost attaining full computation-communication overlap. 두 모델 모두 DeepSeekMoE에서 시도했던, DeepSeek만의 업그레이드된 MoE 방식을 기반으로 구축되었는데요. DeepSeek-Coder-V2는 코딩과 수학 분야에서 GPT4-Turbo를 능가하는 최초의 오픈 소스 AI 모델로, 가장 좋은 평가를 받고 있는 새로운 모델 중 하나입니다. ‘DeepSeek’은 오늘 이야기할 생성형 AI 모델 패밀리의 이름이자 이 모델을 만들고 있는 스타트업의 이름이기도 합니다. 마이크로소프트 리서치에서 개발한 것인데, 주로 수학 이론을 형식화하는데 많이 쓰인다고 합니다. 을 조합해서 개선함으로써 수학 관련 벤치마크에서의 성능을 상당히 개선했습니다 - 고등학교 수준의 miniF2F 테스트에서 63.5%, 학부 수준의 ProofNet 테스트에서 25.3%의 합격률을 나타내고 있습니다.
If you have any questions relating to where by and how to use ديب سيك مجانا, you can contact us at our site.